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Abstract We address randomized methods for control and optimization based on generat-
ing points uniformly distributed in a set. For control systems this sets are either stability
domain in the space of feedback controllers, or quadratic stability domain, or robust sta-
bility domain, or level set for a performance specification. By generating random points in
the prescribed set one can optimize some additional performance index. To implement such
approach we exploit two modern Monte Carlo schemes for generating points which are ap-
proximately uniformly distributed in a given convex set. Both methods use boundary oracle
to find an intersection of a ray and the set. The first method is Hit-and-Run, the second is
sometimes called Shake-and-Bake. We estimate the rate of convergence for such methods
and demonstrate the link with the center of gravity method. Numerical simulation results
look very promising.

Keywords Randomized algorithms · Monte Carlo · Optimization · Random search ·
Linear systems · Stabilization

1 Introduction

Recent years exhibited the growing interest to randomized algorithms in control and opti-
mization; e.g., see Tempo et al. (2004). There are numerous reasons for such interest, the
discussion can be found in Campi (2008). Historically, first random search methods for
optimization were proposed in 1960-th (Rastrigin 1968), however rigorous analysis (Ne-
mirovski and Yudin 1983) demonstrated that optimistic hopes on their effectiveness for
global optimization were exaggerated. Nevertheless now one can see the revival of random-
ized approaches for optimization. Present paper proposes modern Monte Carlo schemes
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(so-called Markov Chain Monte Carlo (MCMC); e.g., see Rubinstein and Kroese 2008;
Gilks et al. 1996; Diaconis 2009) for convex optimization and control problems.

Up to now randomized algorithms in optimization are mostly oriented on discrete op-
timization and NP-hard problems; e.g., see Rubinstein and Kroese (2008, 2004), Diaconis
(2009), Mitzenmacher and Upfal (2005). There are few publications related to convex case
(Bertsimas and Vempala 2004). On the contrary, in control field most efforts were directed
on convex structure of the problem; this is why in control problems quadratic stability is
used instead of stability, quadratic robust stability instead of robust stability etc. However
it remains a challenging problem to deal with basic notions (such as stability) in spite of
nonconvexity of the domains under consideration. It seems that so called Hit-and-Run (HR)
method provides an useful opportunity to achieve this goal. The method was originally pro-
posed in Turchin (1971) and discussed in details in Smith (1984), it is a version of Monte
Carlo method to generate points which are approximately uniformly distributed in a given
set. Its properties are discussed in Lovasz (1999) while its accelerated versions are pro-
posed in Kaufman and Smith (1998). One of the pioneering works in the field of convex
optimization is due to Bertsimas and Vempala (2004) where Hit-and-Run method was used.
Surprisingly, up to our knowledge it has not been exploited in control applications. We guess
that HR is the promising tool for stabilization and optimization of linear systems. It allows
generating random points inside the stability domain or inside performance specification
domain in the space of gain matrices for feedback. Thus we can, for instance, generate sta-
bilizing controllers of the fixed structure and optimize some performance index. The only
assumption is that one admissible controller is available. Another useful example of MCMC
is so-called Shake-and-Bake (SB) method. It has been developed in Borovkov (1991) (see
also Borovkov 1994) and became a useful technique in physics (Comets et al. 2006). This
method can be also exploited for optimization and control problems.

The structure of the paper is as follows. In Sect. 2 the optimization problem is formu-
lated. For convex case the cutting plane method based on uniformly generated points in the
set is presented and the main result on the expected rate of convergence is given. Section 3
is devoted to implementation of the “ideal” Monte Carlo. We consider Markov-chain Monte
Carlo schemes for generating samples asymptotically uniformly distributed in a bounded
set. We describe boundary oracle which is needed for the implementation of the technique.
Boundary oracle can be found either in explicit form or it can be constructed numerically.
Two generating schemes (Hit-and-Run and Shake-and-Bake) are discussed. We also provide
some examples of their behavior in optimization problems. Section 4 contains the general
scheme of HR method applied to control problems. It describes boundary oracle for several
sets arising in control. Subsection 4.1 treats stabilization of SISO or MIMO systems. HR
method allows solving such hard problems as stabilization via static output feedback (pro-
vided that one stabilizing controller is given). Next Subsect. 4.2 is devoted mostly to convex
case (robust quadratic stabilization problems). Section 5 gives some conclusive remarks.

2 Optimization: problem formulation and “ideal” Monte Carlo

We consider the problem

min cT x

s.t. x ∈ X
(1)

where X is a convex bounded closed set in R
n with nonempty interior. Of course an arbitrary

convex optimization problem can be converted into format (1). For instance, if the original
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problem is min f (x) s.t. x ∈ Q, Q and f are convex, then we introduce a slack variable t

and proceed to

min t

s.t. x ∈ Q, f (x) − t ≤ 0.

There exist powerful deterministic methods for convex optimization such as interior-point
algorithms (Ben-Tal and Nemirovski 2001; Nesterov and Nemirovsky 1994); they are
proved to be polynomial-time and very efficient in practical computations. We suggest ran-
dom algorithms that are quite efficient in some cases. Suppose that we can generate a sample
of N independent uniformly distributed points in X and in the convex sets Xk arising in the
process of calculations. This is very strong assumption, availability of such generator is an
exception. Of course, we can always apply rejection method: take a simple set (an ellipsoid
or a box) containing Xk , generate points uniformly in this set and reject those points which
are not in Xk . However the proportion of rejected points is in general too large for high-
dimensional problems. In the next sections we provide implementable alternatives for this
approach.

The cutting plane method based on a uniform generator looks as follows.

1. Set k = 1, X1 = X.
2. Generate N points x1, x2, . . . xN independently uniformly distributed in Xk .
3. Find fk = mini=1,...,N cT xi .
4. Set Xk+1 = Xk ∩ {x : cT x ≤ fk} and proceed to Step 2.

The main result on the expected rate of convergence of the algorithm reads as follows.
Denote f ∗ = maxx∈X cT x, f∗ = minx∈X cT x, h = f ∗ − f∗; B(a, b) = ∫ 1

0 ta−1(1 − t)b−1dt is
Euler beta-function (see beta(a,b) command in MATLAB).

Theorem 1 After k iterations of the algorithm

E
[
fk

] − f∗ ≤ hqk, q = 1

n
B

(

N + 1,
1

n

)

≤
(

1

N + 1

) 1
n

. (2)

Thus the algorithm converges (in mean) with geometric rate.
The proof of the theorem can be found in Dabbene et al. (2008); it has much in common

with the proof of the relating result in Bertsimas and Vempala (2004) and exploits Brunn-
Minkowski inequality. It is shown that the worst-case body X is a cone (with c being a
normal to its base) and the estimate is sharp for such X. The case of N = 1, k = 1 is of
special interest.

Theorem 2 Let x1 be a random point uniformly distributed in X. Then

E
[
cT x1

] − f∗ ≤ h

(

1 − 1

n + 1

)

.

Having in mind that E[x1] = g (center of gravity of X) and B(2, 1
n
) = n2

n+1 we get that
for arbitrary c one has cT g − f∗ ≤ h(1 − 1

n+1 ). This is the famous Radon theorem (Radon
1916), thus Theorem 1 is its extension. The deterministic version of random algorithm above
is center of gravity method: take xk = gk (center of gravity of Xk) and set Xk+1 = Xk ∩
{x : cT x ≤ cT gk}. Similar method has been proposed in Levin (1965), Newman (1965) for
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optimization problem formulated in the form min f (x) s.t. x ∈ B , where f is a convex
function and B is a ball. The cutting plane for construction of Xk+1 is given by ∇f (xk)T (x−
xk) ≤ 0 where ∇f (x) is a subgradient of f at x and xk is the center of gravity of Xk . The
proof is based on Grunbaum theorem for volumes of subsets cut by the hyperplane. It is
interesting to note that the estimate based on Radon theorem is better.

Theorem 1 provides results on expected convergence of the method. Estimates on con-
vergence with high probability can be also obtained (Dabbene et al. 2008).

As we have mentioned, uniform sampling is not available in general situations, and at the
first glance the value of the relating results (like Theorem 1) is minor. However these results
are of interest when we check how close is the implemented distribution to the uniform one.
Such tests will be used in the next section.

3 Implementable random algorithms: boundary oracle

For implementation of the “ideal” Monte Carlo method we need a mechanism for generating
uniform random samples from X. In this section we describe Markov Chain Monte Carlo
schemes for generating samples asymptotically uniformly distributed in a bounded closed
set X ∈ R

n. Suppose we have a starting point x0 ∈ X. We call boundary oracle an algorithm
which provides L = {t ∈ R : x0 + td ∈ X}, where d is a vector specifying the direction
in R

n. In the simplest case, when X is convex, this set is the closed interval [t, t], where
t = inf{x0 + td ∈ X}, t = sup{x0 + td ∈ X}. In more general situations boundary oracle
provides all intersections of the straight line x0 + td,−∞ < t < +∞ with X. We also
denote complete boundary oracle a boundary oracle algorithm that provides also an internal
normal vectors to X at boundary points. Boundary oracle is available for numerous specific
sets X. For linear matrix inequalities (LMI) (see Boyd et al. 1994) set

X =
{

x ∈ R
n : A0 +

n∑

i=1

xiAi � 0

}

(3)

(Ai are symmetric matrices of a certain size for all i, A � 0 means that A is negative
semidefinite) to derive a semidefinite boundary oracle we exploit the following result for
A = A0 + ∑n

i=1 x0
i Ai , B = ∑n

i=1 diAi .

Lemma 1 (Polyak and Shcherbakov 2006b) Let A ≺ 0 and B = BT . Then the matrix A+ tB

is negative definite for t ∈ (t, t):

t =
{

maxti<0 ti ,

−∞, if all ti > 0,
t =

{
minti>0 ti ,

+∞, if all ti < 0

where ti are the generalized eigenvalues of the matrix pencil (A,−B), i.e., Aei = −tiBei .
For t /∈ (t, t) the matrix A + tB loses negative definiteness.

Another LMI constrained set is the set of symmetric matrices P defined by Lyapunov
inequality:

X = {P : AP + PAT + C � 0, P 
 0} (4)

where A is a stable matrix and C � 0. This set is always convex, and boundary oracle
can be found explicitly. Indeed, take P0 ∈ X and generate D = DT —a matrix specifying the
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direction. Then A(P0 + tD)+ (P0 + tD)AT +C � 0 ⇔ F + tG ≺ 0, F = AP0 +P0A
T +C,

G = AD + DAT . For this case L = (t, t) and t = minλi , t = minμi , where λi are positive
real eigenvalues of matrix pencil F,−G, while μi are positive real eigenvalues of matrix
pencil F,G.

Boundary oracle for quadratic matrix inequalities (QMI) sets

X = {
P : AP + PAT + PBBT P + C � 0, P 
 0

}
(5)

can be obtained similarly.
For the sets given by linear algebraic inequalities

X = {
x ∈ R

n : cT
i x ≤ ai, i = 1, . . . ,m

}
(6)

the boundary oracle for x0 + td is [t, t],

t = min
i: cT

i
d>0

ai − cT
i x0

cT
i d

, t = max
i: cT

i
d>0

ai − cT
i x0

cT
i d

.

3.1 Hit-and-Run

We start with presenting the idea and results relating to HR method in general setting. Sup-
pose there is a bounded set X ∈ R

n (in general nonconvex and not simply connected) and a
point x0 ∈ X. In every step we choose a random vector d uniformly distributed on the unit
sphere in R

n. HR method generates points in X as follows:

x1 = x0 + t1d, t1 is uniformly distributed on L

given by the boundary oracle.
Then x0 is replaced with x1, L is updated

with respect to x1 and so on.

The simplest theoretical result on the behavior of HR method states that if X does not
contain lower dimensional parts, then the method achieves the neighborhood of any point of
X with nonzero probability and asymptotically the distribution of points xi tends to uniform
one.

Theorem 3 (Smith 1984) Suppose X coincides with the closure of interior points of X.
Then for any measurable set A ⊂ X the probability Pi(A) = P (xi ∈ A|x0) can be estimated
as |Pi(A) − P (A)| ≤ qi , where P (A) = Vol(A)/Vol(X), q < 1.

Unfortunately q strongly depends on geometry of X and dimension n and can be close
enough to 1. Tighter bounds for the rate of convergence for convex X can be found in Lovasz
(1999), Hit-and-Run modifications for accelerating the rate of convergence are described
in Kaufman and Smith (1998). The behavior of Hit-and-Run method depends also on the
starting point. Let X = [0,1]n ⊂ R

n and x0 = 0. In this case with high probability (equal
1 − 2−n) some components of d have different signs, and x1 = x0.

We examine the method by the comparison of the obtained value minfi−f∗
h

(or f ∗−maxfi

h
)

(here fi = cT xi, xi are generated by Hit-and-Run) with the theoretical estimate of this value
given by Theorem 1 (valid for uniform distribution). Consider the standard SDP (semidefi-
nite programming) problem

min cT x

s.t. A0 + ∑n

i=1 xiAi � 0,
(7)
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Table 1 Comparison of
estimates for HR and uniform
distribution—LMI set

n N
f ∗−maxfi

h
minfi−f∗

h
1
nB(N + 1, 1

n )

2 100 0.0489 0.0290 0.0883

2 1000 0.0079 0.0043 0.0280

2 5000 0.0035 0.0025 0.0125

2 10000 0.0013 0.0014 0.0089

10 100 0.3682 0.4524 0.5999

10 1000 0.2548 0.3892 0.4768

10 5000 0.2262 0.3602 0.4059

10 10000 0.2085 0.3524 0.3787

where Ai are randomly generated such that

(i) the feasible set has non-empty interior (for simplicity, take A0 ≺ 0);
(ii) the feasible set is bounded.

To satisfy the latter condition we generate Ai , i = 1, . . . , n as follows:

M = 2rand(m/2) − 1, M = M + MT , Ai = blkdiag(M,−M),

Ai is a block-diagonal matrix.
We generate N points for various dimension n via Hit-and-Run method and take em-

pirical expectation of minimal and maximal function values. Exact minimal and maximal
function values f∗ and f ∗ are obtained by standard SDP solver Yalmip (Lofberg 2004). The
results are presented in Table 1.

Hit-and-Run points give better expectation of minimum and maximum since the feasible
set for randomly generated Ai is usually well-conditioned (we remind that the estimates of
Theorem 1 are sharp for cone-shape sets).

For the case of the worst geometry we consider the following problem

min cT x

s.t. ‖x‖1 ≤ 1,

xi ≥ 0,

c = [1, . . . ,1].
(8)

The feasible set is a simplex and the averaged minimal function value should be in accor-
dance with Theorem 1. The obtained result are shown in Table 2 (note that f∗ = 0).

We observe that the expected minimum for Hit-and-Run points is approximately the same
as the theoretical expectation and it becomes worse with the growth of dimension. The sit-
uation dramatically changes for ill-conditioned sets. For instance, taking c = [1, . . . ,1,104]
in (8) we find out that Hit-and-Run points concentrate in a very narrow region even in R

2,
see Fig. 1.

Having generated the sample x1, x2, . . . , xN ∈ Xk coming back to optimization prob-
lem (1) we can apply cutting plane method described in Sect. 2. To avoid situations like
above we need a “good” interior starting point (warm-start). For this purpose the algo-
rithm will be slightly modified. Instead of cutting with (c, x) ≤ fk = min(c, xi) we take
Xk+1 = Xk ∩ {(c, x) ≤ ϕ̃}, ϕ̃ being 10% quantile of ϕi = (c, xi), i = 1, . . . ,N . The average
of the remaining 10% points with ϕi ≤ ϕ̃ is exploited as the initial point for Hit-and-Run.
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Table 2 Comparison of
estimates for HR and uniform
distribution—simplex set

n N minfi
1
nB

(
N + 1, 1

n

)

2 100 0.0916 0.0883

2 1000 0.0318 0.0280

2 5000 0.0149 0.0125

2 10000 0.0147 0.0089

3 100 0.2405 0.192

3 1000 0.1341 0.0893

3 5000 0.0447 0.0522

3 10000 0.0461 0.0414

10 100 0.7449 0.5999

10 1000 0.6132 0.4768

10 5000 0.4693 0.4059

10 10000 0.4584 0.3787

Fig. 1 Hit-and-Run fails for
ill-conditioned set in R

2

The methods were tested over a range of SDP problems (7) with randomly generated
data. The problems were solved via cutting plane method using HR samples. The discussion
of the results can be found in Polyak and Shcherbakov (2006a). We applied modified HR
where minxi was replaced with averaged Xi and various heuristic acceleration methods
(scaling, projecting, accelerating step) were exploited.

3.2 Shake-and-Bake

An alternative way is to generate asymptotically uniformly distributed samples in the bound-
ary of the set X ∈ R

n. In some cases these samples may cause better estimate of the con-
vergence rate. Shake-and-Bake algorithm is proposed in Borovkov (1991, 1994) in order to
generate random vectors in a connected domain with smooth boundary or on the boundary
itself. SB was exploited for studying the stochastic billiards with the cosine law of reflection
(Comets et al. 2006).

Suppose x0 is a boundary point of X and n0 is the unit internal normal vector for ∂X at
the point x0. Since the set X is assumed to be piece-wise linear the probability to reach a
boundary point with a unique internal normal is one. SB method generates points in ∂X as
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follows:

x1 = x0 + td, t is given by the boundary oracle in the
direction d,‖d‖ = 1,

d = gn0 + r, g =
√

1 − ξ
2

n−1 , ξ is uniform random variable in [0,1],
r is random uniform direction ‖r‖ = 1, (n0, r) = 0.

Then x0 is replaced with x1, normal n1 is calculated and so on. The special choice of g is
due to desirable cosine law of reflection that guarantees asymptotically uniform distribution
of samples xi on the boundary of X, asymptotically uniform samples on X can be obtained
taking uniform random points in the chord [xi−1, xi].

For the implementation of SB algorithm we need the complete boundary oracle that pro-
vides an internal normal vector at the boundary points besides the intersection of the line
and the set X. For the set (3) internal normal at the point x0 ∈ ∂X is a vector n with com-
ponents ni = −(Aie, e), where e is the eigenvector corresponding to zero eigenvalue of the
matrix A0 +∑n

i=1 x0
i Ai provided that multiplicity of the zero eigenvalue is one. In more gen-

eral case, we describe a cone of admissible directions K = {d : (d,nk) ≥ 0, k = 1, . . . ,m}
where vectors nk with components nk

i = −(Aie
k, ek) are formed by different eigenvalues ei

corresponding to zero eigenvalue of multiplicity m (or to eigenvalues close to zero).
For the Lyapunov inequality set (4) the normal at the point P0 is given by the matrix

N = −(eeT A − AT eeT ) (9)

where e is the eigenvector corresponding to zero eigenvalue of the matrix AP0 +P0A
T +C.

Since the zero eigenvalue has multiplicity m and there are m different eigenvalues e1, . . . , em

a cone of admissible directions is given by K = {D : 〈D,Ni〉 ≥ 0}, Ni = −(ei(ei)T A −
AT ei(ei)T ), inner product of symmetric matrices 〈A,B〉 = tr(AB).

For the set (6) internal normal coincides with vector ci since the boundary point is at the
i-th equality.

SB can be extended for sets with nonsmooth boundary. Then a normal is not available
for arbitrary point but there is a set of vectors that produce the admissible directions cone
and we choose a uniform random direction d in this cone. The example of points generated
by SB for a nonconvex set with nonsmooth boundary are depicted in Fig. 2.

4 Applications to control

In control applications the set X is the set of design variables (e.g., controller parameters
or uncertainties). It is the admissible set with respect to some specifications (e.g., the set of
stabilizing controllers) and the admissible points are most often denoted by k. We keep the
notation as k ∈ X throughout this section.

We provide boundary oracle for several sets arising in control applications.
1. Stability set for polynomials. Consider the affine family of polynomials

P (s, k) = P0(s) +
n∑

i=1

kiPi(s) (10)

where Pi(s) are m-th degree polynomials. The polynomial P (s) is stable (Hurwitz) when all
its roots have negative real parts. Define the set X in the space of parameters k = (k1, . . . , kn)
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Fig. 2 Shake-and-Bake method
for a nonconvex set with
nonsmooth boundary

which corresponds to stable polynomials:

X = {k : P (s, k) is Hurwitz}. (11)

The geometry of such sets and of their boundaries is well studied, see Polyak and
Shcherbakov (2006a). HR method looks as follows. We assume that a stable polynomial
P (s, k0) is given. Then we generate random d ∈ R

n uniformly distributed on the unit sphere
and take P (s, k0 + td) = A(s)+ tB(s),A(s) = P (s, k0),B(s) = ∑n

i=1 diPi(s). The explicit
algorithm for finding L = {t ∈ R : A(s)+ tB(s) is Hurwitz} is available, see Theorem 2 and
Algorithm 1 in Gryazina and Polyak (2006). In general L consists of not more than m/2 + 1
intervals.

2. Stability set for matrices. For a family of matrices A + BKC, where A ∈ R
n×n,B ∈

R
n×m,C ∈ R

l×n are given and K ∈ R
m×l is a variable (which represents either uncertainty

or control gain) we can distinguish the set of stabilizing gains:

X = {K : A + BKC is Hurwitz}, (12)

i.e. all eigen values of A + BKC have negative real parts.
The structure of this set is analyzed in Gryazina and Polyak (2006). It can be nonconvex

and can consist of many disjoint domains. To construct the boundary oracle we generate
matrix D = Y/‖Y‖, Y = randn(m,l) which is uniformly distributed on the unit sphere
in the space of matrices equipped with Frobenius norm. Then we get straight line A +
B(K0 + tD)C = F + tG,F = A + BK0C,G = BDC for a matrix K0 ∈ X. Then L = {t ∈
R : F + tG is Hurwitz}. L consists of finite number of intervals, the algorithm for calculating
their end points is presented in Gryazina and Polyak (2006), Sect. 4. However sometimes
“brute force” approach is more simple. Introduce f (t) = max� eig(F + tG), then the end
points of the intervals are solutions of the equation f (t) = 0 and can be found by use of
standard 1D equation solvers (such as command fsolve in Matlab).

3. Robust stability set. For the affine family of polynomials with uncertain parameters
q ∈ Q this set is defined as

X =
{

k : P0(s, q) +
n∑

i=1

kiPi(s, q) is Hurwitz for all q ∈ Q

}

. (13)
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If Q is a finite set {q1, . . . , qm} and m is small, the set X is the intersection of m sets corre-
sponding to m uncertainties qi , thus the boundary oracle is the intersection of corresponding
boundary oracles: L = ⋂

Li . There are also some other cases, when L can be calculated
explicitly, for instance pi(s, q) being interval polynomials. However in more general situa-
tions we apply different approach working with robust stability problems (see Subsect. 4.2
below).

4. Quadratic stability set. This set is defined as solution of some LMIs. The typical ex-
ample is the set of symmetric matrices P defined by Lyapunov inequality (4).

4.1 Stabilization

We assume starting point k0 ∈ X to be known to demonstrate the applications of the HR
algorithm.

1. Consider linear time-invariant single-input single-output plant G(s) = a(s)

b(s)
where

a(s), b(s) are given polynomials of order m. We wish to stabilize it with low order con-
troller C(s) = f (s)

g(s)
where polynomials f (s), g(s) have fixed orders (for instance, it can be

PID-controller). We assume that one stabilizing controller C0(s) = f 0(s)/g0(s) is known.
The closed-loop characteristic polynomial is

P (s) = a(s)f (s) + b(s)g(s). (14)

If we treat the coefficients of the polynomials f (s), g(s) as parameters k, we are at the
setup of (10).

Example 1 (Fujisaki et al. 2008) Given a plant

P (s) = 17(s + 1)(16s + 1)(s2 − s + 1)

s(−s + 1)(−s + 90)(4s2 + s + 1)

and a fixed order controller C(s) of the form

C(s) = k1 + k2s + k3s
2

k4 + k5s + k6s2
.

The problem is to find controller parameters that guarantee ‖W(s)S(s)‖∞ < 1 where
S(s) = 1

1+C(s)P (s)
is a sensitivity transfer function and W(s) = 55(1+3s)

1+800s
is a weighted func-

tion, which is usually chosen from engineering specifications. Starting with a controller
found in Gryazina and Polyak (2006)

C0(s) = −0.532 − 0.5407s − 2.0868s2

1 − 0.3645s − 1.2592s2
(15)

we restrict controller parameters k to stay in 0.1-box neighborhood of the original parameter
values and generate 1000 stabilizing controllers via Hit-and-Run method. Then for each
controller we calculate ‖W(s)S(s)‖∞, for 217 points it appears to be less than one. Finally,
we choose the best controller

C∗(s) = −0.537 − 0.5743s − 2.1114s2

1 − 0.3025s − 1.2128s2

that leads to ‖W(s)S(s)‖∞ = 0.8206 compared to 0.9822 for controller (15). So here Hit-
and-Run allows performing local improvement.
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2. Proceed to static output feedback stabilization for uncertain multi-input multi-output
plant:

ẋ = A(q)x + B(q)u, y = C(q)x, u = Ky, (16)

the objective is to find robustly stabilizing gains K provided we know one of them.

Example 2 Here

A =

⎡

⎢
⎢
⎣

−0.0366 0.271 0.0188 −0.4555
0.0482 −1.01 0.0024 −4.0208
0.1002 q1 −0.707 q2

0 0 1 0

⎤

⎥
⎥
⎦ ,

B =

⎡

⎢
⎢
⎣

0.4422 0.1761
q3 −7.5922

−5.52 4.49
0 0

⎤

⎥
⎥
⎦ , C = [

0 1 0 0
]
,

q ∈ Qρ = {q : |qi − q0
i | ≤ ργi}, q0 = [0.3681,1.42,3.5446]; γ = [0.05,0.01,0.04]. The

original problem here is to find a controller robustly stabilizing the closed-loop system
with ρ = 1 and a decay rate of at least α = 0.1. This problem arises in control of heli-
copters: (Singh and Coelho 1984) and it was studied in Bhattacharyya (1987), El Ghaoui et
al. (1997), Tempo et al. (2004).

We apply our technique that allows finding better controller robustly stabilizing the sys-
tem with a wider uncertainty range and, perhaps, a larger decay rate.

The first step is to generate controllers stabilizing the nominal system, i.e., with q = q0.
The closed-loop system matrix is Ac = A+BKC and we also can apply HR method tailored
for this problem. Starting with the stabilizing controller K = [−0.4357; 9.5652] (see El
Ghaoui et al. 1997) we generate 1000 points that belong to the intersection of the stability
domain and the bounding box ‖K‖∞ ≤ 100.

Then we select a controller that guarantee a decay rate α = 0.1, there are 187 controllers
among 1000 that satisfy this requirement. Taking for the nominal matrix A0 = A + αI and
the selected controller as a starting point we generate 1000 controllers for the required α.
Figure 3 shows that these controllers correspond to a segment (where the density of points
is higher) among those generated in the first step. Boundary points are naturally obtained in
HR procedure and they are also depicted.

Then we take into consideration the uncertainty with enlarged uncertainty intervals, i.e.,
ρ > 1. For each controller that guarantees a decay rate α = 0.1 we check if it stabilizes 1000
random points uniformly generated in the box Qρ . For ρ = 40 (i.e. 40 times larger than
original intervals) we still can find several suitable controllers. Their parameters are situated
in the middle of the segment. Take, for instance, K = [7.1096; 57.6346]. Straightforward
validation shows that this controller is indeed robustly stabilizing.

4.2 Robust quadratic stabilization

The general setup has been described earlier. We illustrate how this technique works for one
example.
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Fig. 3 Stabilizing controller
parameters for nominal system

Example 3 Here we investigate the example originated in Barmish (1985). Consider a sys-
tem with uncertainty (16) with

A =
[

q1 1
0 q1

]

, B =
[

q2

1

]

, q ∈ Qρ = {q : |qi | ≤ ρ,ρ = 0.5}.

For the problem of quadratic robust stabilization in Barmish (1985) a very complicated
nonlinear control is suggested. We strive to find a linear control K = [k1; k2] solving the
same problem.

The stability domain for the nominal system (qi = 0, i = 1,2) can be easily found: k1 <

0, k2 < 0. First we generate controllers quadratically stabilizing the nominal system, i.e. such
K that for Ac = A + BK there exist P > 0: AT

c P + PAc < 0. Multiplying by Q = P −1 we
have LMI in Q and Y :

Q > 0, QAT + AQ + BY + Y T BT < 0, Y = KQ.

For a starting point we take feasible solution of LMI using YALMIP (Lofberg 2004). HR
allows generating any number of feasible points (and correspondingly controller parame-
ters).

Then there are two ways to deal with uncertainty. First is straightforward checking robust
quadratic stabilization for each controller that quadratically stabilized the nominal system
by generating required number of uncertain samples. This approach can give a probabilistic
solution. Another approach is applicable when it is sufficient to check feasibility of a certain
(not very large) number of LMIs corresponding to uncertain bounds. In this example it is
sufficient to check quadratic stabilizability of 4 vertex samples. In this case HR is applicable
taking

X =
⋂

i

{Q > 0, QAT
i + AiQ + BiY + Y T BT

i < 0},

where index i corresponds to the vertex sample. For generating quadratic robust stabilizing
controllers the boundary oracle for the set (4) is exploited taking Q = Q0 + J , Y = Y0 + G
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Fig. 4 Robust quadratic
stabilizing controllers

and F = Q0A
T
i + AiQ0 + BiY0 + Y T

0 BT
i , R = JAT

i + AiJ + BiG + GT BT
i , where matrix

J and vector G specify random direction in a corresponding space.
Note that this points are asymptotically uniform in the space of Q,Y matrices but not in

the space of controller parameters K = YQ−1. Figure 4 depicts robust stabilizing controllers
for the original uncertain set with ρ = 0.5 (points).

Now we want to increase ρ. For ρ = 0.8 there are no quadratic robust stabilizing con-
trollers but for ρ = 0.7 their parameters are marked with “o” in Fig. 4. Note that the absolute
parameter values are greater than that for ρ = 0.5.

The controller parameters may happen to be large enough but we can also deal with box-
restrictions for controller parameters, e.g. ‖K‖∞ ≤ γ with starting point K0 satisfying this
condition. Another natural box-restriction is ‖K − K0‖∞ ≤ γ as it was used in Example 1.
For every Hit-and-Run step we solve one-dimensional problem of boundary oracle in t , for
every feasible point (t = 0) the restriction holds. Then find the closest to zero positive and
negative t such that

‖K(t)‖∞ − γ = ‖Y (t)Q(t)−1‖∞ − γ = 0,

where Y (t) = Y0 + tG, Q(t) = Q0 + tJ . These t should be treated as additional candidates
for t and t of the boundary oracle in HR algorithm.

5 Conclusions

The randomized methods (like HR and SB) have serious advantages. They are applicable
for numerous control and optimization problems, are simple in implementation (because
boundary oracles are available in explicit form), generated points give a good representation
of the feasible set. The first results of numerical simulation look promising.

However the distribution of points generated by the proposed methods strongly depends
on the geometry of the set. It is far from uniform for narrow-shaped bodies and high-
dimensional sets. We plan further research on computational schemes of the algorithms for
these cases.
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